19 research outputs found

    Biological activity differences between TGF-β1 and TGF-β3 correlate with differences in the rigidity and arrangement of their component monomers

    Get PDF
    [Image: see text] TGF-β1, -β2, and -β3 are small, secreted signaling proteins. They share 71–80% sequence identity and signal through the same receptors, yet the isoform-specific null mice have distinctive phenotypes and are inviable. The replacement of the coding sequence of TGF-β1 with TGF-β3 and TGF-β3 with TGF-β1 led to only partial rescue of the mutant phenotypes, suggesting that intrinsic differences between them contribute to the requirement of each in vivo. Here, we investigated whether the previously reported differences in the flexibility of the interfacial helix and arrangement of monomers was responsible for the differences in activity by generating two chimeric proteins in which residues 54–75 in the homodimer interface were swapped. Structural analysis of these using NMR and functional analysis using a dermal fibroblast migration assay showed that swapping the interfacial region swapped both the conformational preferences and activity. Conformational and activity differences were also observed between TGF-β3 and a variant with four helix-stabilizing residues from TGF-β1, suggesting that the observed changes were due to increased helical stability and the altered conformation, as proposed. Surface plasmon resonance analysis showed that TGF-β1, TGF-β3, and variants bound the type II signaling receptor, TβRII, nearly identically, but had small differences in the dissociation rate constant for recruitment of the type I signaling receptor, TβRI. However, the latter did not correlate with conformational preference or activity. Hence, the difference in activity arises from differences in their conformations, not their manner of receptor binding, suggesting that a matrix protein that differentially binds them might determine their distinct activities

    Paediatric refugees from Ukraine: guidance for health care providers

    Get PDF
    BACKGROUND: With the invasion of Ukraine by the Russian Army in February 2022, refugees, the majority of whom are women and children, started fleeing the war to neighbouring countries. Even before the current escalation, the conflict in the eastern part of Ukraine has led to the internal displacement of more than 200,000 children, and many others have experienced attacks, e.g. on schools. This inevitably leads to limitations in health care delivery. During transit, overcrowding, poor shelter and vulnerability may further put refugees at increased risk for infectious diseases. This consensus document aims to provide information and guidance regarding health issues that paediatricians and general practitioners may face when caring for Ukrainian children. METHODS: Members of the Migrant Health Reference Group of Paediatrics Switzerland and the Paediatric Infectious Disease Group in Switzerland developed this recommendation between March and April 2022 in a modified Delphi process. RESULTS: A total of 50 recommendations were agreed on with a >/=80% consensus. These include the following topics: i) general aspects, including interpreter services, urgent health needs, personal history and general check-ups; ii) mental health, including how to search for signs of psychological distress without going into traumatic details; iii) vaccinations, including recommendations for evaluation and catch-up; iv) screening for tuberculosis, human immunodeficiency virus, and hepatitis B and C; and v) providing age-appropriate preventive and health service information. CONCLUSION: This document provides current evidence and guidance when caring for paediatric refugees from Ukraine. The recommendations focus on Switzerland but may well be used in other countries. These are based on current evidence and may need to be adapted to individual situations and once further evidence becomes available

    Conformation and self-association of human recombinant transforming growth factor-beta3 in aqueous solutions

    No full text
    The transforming growth factors-beta (TGF-beta) are important regulatory peptides for cell growth and differentiation with therapeutic potential for wound healing. Among the several TGF-beta isoforms TGF-beta3 has a particularly low solubility at physiological pH and easily forms aggregates. A spectroscopic structural analysis of TGF-beta3 in solution has thus been difficult. In this study, circular dichroism spectroscopy was used to determine the secondary structural elements of TGF-beta3. In addition, the aggregation of TGF-beta3 was investigated systematically as a function of pH and salt concentration using a rapid screening method. Sedimentation equilibrium and sedimentation velocity analysis revealed that TGF-beta3 exists predominantly in two major forms: (i) monomers in solution at low pH and (ii) large precipitating aggregates at physiological pH. Under acidic conditions (pH > 3.8) the protein was not aggregated. At pH approximately 3.9, a monomer right arrow over left arrow dimer equilibrium could be detected that transformed into larger aggregates at pH pH > 9.8 with the aggregation maximum between pH 6.5 and 8. 5. The aggregation process was accompanied by a structural change of the protein. The CD spectra were characterized by an isodichroic point at 209.5 nm indicating a two-state equilibrium between TGF-beta3 dissolved in solution and aggregated TGF-beta3. Aggregated TGF-beta3 showed a higher beta-sheet content and lower beta-turn and random coil contributions compared with monomeric TGF-beta3. Both the solution structure and the aggregate structure of TGF-beta3 were different from the crystal structure. This was in contrast to TGF-beta2, which showed very similar crystal and solution structures. Under alkaline conditions (pH pH > 11. 0 was reversible. Aggregation of TGF-beta3 was, furthermore, influenced by the presence of salt. For pH < 3.8 the addition of salt greatly enhanced the tendency to aggregate, even in the very basic domain. Under physiological conditions (pH 7.4, cNaCl = 164 mM) TGF-beta3 has almost the highest tendency to aggregate and will remain in solution only at nanomolar concentrations

    Combinatorial synthesis and sensorial properties of polyfunctional thiols.

    No full text
    Over the past few years, polyfunctional thiols present as trace components have been found to play a major role in many food flavors, due to their exceptionally low odor thresholds. Unfortunately, their presence in minute concentration (in ng/kg to a few microg/kg) and their high reactivity make it very difficult to extract and identify them. Furthermore, most of them are not yet commercially available. The aim of this work was to characterize the chromatographic and sensorial properties of 10 synthetic mercaptoketones and mercaptoalcohols. Combinatorial chemistry proved to be a very useful way to synthesize them rapidly. Sulfur-selective sulfur chemiluminescence detection chromatograms coupled with mass spectroscopy enabled the target compounds to be identified. Flavor profiles and best estimate gas chromatography lowest amount detected by sniffing (BE-GC-LOADS) values were further determined by GC-olfactometry. As expected, new, exceptionally odorant molecules (BE-GC-LOADS < 0.1 ng) were revealed by this unusual approach

    Molecular determinants of the reversible membrane anchorage of the G-protein transducin

    No full text
    Transducin is a heterotrimer formed by a fatty acylated alpha-subunit and a farnesylated betagamma-subunit. The role of these two covalent modifications and of adjacent hydrophobic and charged amino acid residues in reversible anchoring at disk model membranes is investigated at different pH values, salt concentrations, and lipid packing densities using the monolayer expansion technique and CD spectroscopy. The heterotrimer only binds if the acetylated alpha-subunit is transformed into its surface-active form by divalent cations. In the presence of salts the alpha(GDP)-subunit, the betagamma-complex, and the heterotrimer bind to POPC monolayers at 30 mN/m, estimated to mimic the lateral packing density of disk membranes, with apparent binding constants of Kapp = (1.1 +/- 0.3) x 10(6) M-1 (reflecting the penetration of the fatty acyl chain together with approximately three adjacent hydrophobic amino acid residues), Kapp = (3.5 +/- 0.5) x 10(6) M-1 (reflecting the penetration of the farnesyl chain), and Kapp = (1.6 +/- 0.3) x 10(6) M-1 (reflecting a major contribution of the alpha(GDP)-subunit with only a minor contribution from the betagamma-complex). The apparent binding constant of the alpha(GTP)-subunit is distinctly smaller than that of the alpha(GDP)-subunit. Binding to negatively charged POPC/POPG (75/25 mole/mole) monolayers is reinforced by 2-3 cationic residues for the betagamma-complex. The alpha-subunit shows no electrostatic attraction and the heterotrimer shows even a slight electrostatic repulsion which becomes the dominating force in the absence of salts
    corecore